Uma rede U-Net modificada para segmentação de lesões de pele em imagens dermatoscópicas.

Nenhuma Miniatura disponível
Data
2022
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
O diagnóstico auxiliado por computador pode ser viável para o diagnóstico precoce de câncer de pele. Para isso a tarefa de segmenta- ção de imagem desempenha um papel importante. A segmentação de uma imagem é um processo do qual a imagem é dividida, e a região de interesse é destacada, nesse caso, a lesão de pele pigmentada é segmentada. A segmentação de imagens dermatoscópicas é um desa- fio para os métodos tradicionais de segmentação e também para os métodos de aprendizado de máquina devido às diferentes condições de imagem. Há uma variação significativa na cor, textura, forma, tamanho e localização nas imagens dermatoscópicas. Além disso, po- dem conter imagens com variação de iluminação e diversos artefatos, como pelos, régua, bolhas de ar/óleo e amostra de cor. As imagens dermatoscópicas são adquiridas a partir de um dermatoscópio que permite que eventuais lesões possam ser visualizadas considerando estruturas nas camadas mais profundas da pele. Enfim, a arquitetura U-Net, é amplamente utilizada na literatura para segmentar imagens dermatoscópicas. O presente trabalho propõe um modelo baseado na arquitetura U-Net para segmentação de lesão de pele em imagens dermatoscópicas. Ainda, apresenta um estudo de ablação para jus- tificar as modificações feitas no modelo U-Net original, sendo elas, o número de épocas de treinamento, tamanho da imagem, funções de ativação e otimização, dropout e número de blocos convolucionais. Experimentos foram realizados nos conjuntos de dados ISIC 2017 e ISIC 2018 e mostram que é possível chegar a um modelo simples capaz de apresentar resultados competitivos em relação a outros trabalhos de última geração com os devidos ajustes em seus parâmetros.
Descrição
Programa de Pós-Graduação em Ciência da Computação. Departamento de Ciência da Computação, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto.
Palavras-chave
Inteligência artificial, Redes neurais - computação, Processamento de imagens
Citação
ARAUJO, Graziela Silva. Uma rede U-Net modificada para segmentação de lesões de pele em imagens dermatoscópicas. 2022. 94 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2022.