A review on the design and application of bi-functionalized adsorbents to remove different pollutants from water.
Nenhuma Miniatura disponível
Data
2023
Título da Revista
ISSN da Revista
Título de Volume
Editor
Resumo
This review provides a bibliometric analysis of chemically bi-functionalized materials that have been employed
as advanced adsorbents to remove various types of organic and/or inorganic (cationic and/or anionic) pollutants
from water and wastewater. The relevance of regeneration and reuse experiments for bi-functionalized adsorbents is discussed, since they have been shown to be fundamental in advancing the technology readiness level
(TRL) and for assessing technical, economic, and environmental feasibility. Only 56% of the studies compiled in
this review carried out regeneration and reuse experiments, and few studies have proposed and discussed waste
management of adsorbents after depletion of their adsorption capacity. The aim of the present critical analysis is
to inform and encourage researchers in this field, given the lack of in-depth information in the literature concerning advanced materials especially designed for the simultaneous removal of different types of pollutants
coexisting in complex aqueous matrices in various environments, which slows transfer of the technology to the
market. Among the compiled support materials, the most investigated were silica-based (~46%), followed by
polymers (~15%) and biomass (~11%), with the adsorption capacity (Qmax) of bi-functionalized adsorbents
outperforming mono-functionalized adsorbents, in most cases. For inorganic pollutants, the highest and lowest
Qmax values of 4.67 and 1.51 mmol g− 1 for Cr(VI) were reported for polymer- and silica-based adsorbents,
respectively. Biomass- and xerogel-based adsorbents were the most efficient for organic compounds, with Qmax
values of 39.2 and 2.61 mmol g− 1 for trichloroacetic acid and methylene blue, respectively. In summary, the
results were promising, but advances are still needed, since most of the developed technologies presented low
TRL of ≤4, representing a challenge for transition of the technologies to the pilot scale (TRL ≥ 6) or for transfer
to the market.
Descrição
Palavras-chave
Bi-functionalization, Water treatment, Advanced materials, Emerging pollutants, Adsorption
Citação
BUKVA, M. et al. A review on the design and application of bi-functionalized adsorbents to remove different pollutants from water. Journal of Water Process Engineering, v. 53, artigo 103636, 2023. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2214714423001538>. Acesso em: 01 ago. 2023.